

#### 21st Century Asphalt Pavements

Challenges & Opportunities

Minnesota Pavement Conference
Dave Newcomb
Division Head
Materials & Pavement
Texas A&M Transportation Institute



### **Topics**

- Materials
- Testing
- Design
- Construction
- THE BIGGEST CHALLENGE!





# Materials: This is Not Your Granny's Asphalt!

Warm Mix
Modifiers
Recycling Agents
Recycled Mixes
Future



### How have asphalt materials changed?

- 1901 2000 Age of Uncomplicated
  - Almost all unmodified asphalt
  - Recycling in 1970s 90s: Low amounts of RAP
  - Almost all dense-graded mixes
  - Marshall and Hveem become displaced
  - Volumetric design works OK

Reincarnated as Roads





### How have asphalt materials changed?

- 2000 2016
  - PG System in full swing
  - Refineries change asphalt gets expensive
  - Warm mix
  - PPA to make high PG
  - REOB to make low PG
  - Polymers
  - More RAP and RAS
  - Smaller NMAS
  - SMAs





### **PG System**

- Much better asphalt specification
- Mix design needed some tweaking
  - Coarse gradations were not necessarily better
  - Aggregate-crushing compaction
  - Lift thickness vs NMAS
- All states except one or two





### **Refinery Changes**

- ROSE (Residuum Oil Supercritical Extraction)
- Cokers
- More terminal blenders





#### **REOB** and **PPA**

- Recycled Engine Oil Bottoms (Steve Escobar)
  - Most common additive
  - High flash point, high visc. index, low wt. loss, low visc., etc.
  - Also paraffinic
- Polyphosphoric Acid (TRB Circular E-C160)
  - Commonly used additive
  - High visc., no free H<sub>2</sub>O, does not oxidize asphalt or lower m-value
  - May react with anti-strip
- Both are dependent upon asphalt chemistry!



### **Blending Requires Attention**



Compatibility is Important



#### **Warm Mix**

- New, not radical, technology
  - Additives
  - Plant Foaming
- Lower production and placement temperature
  - Reduced emissions
  - Better compaction
  - Late season paving
  - Reduced energy consumption?
- 65% of Asphalt Mix in Minnesota!
- Future Half Warm Mix?



### Yellowstone Paving





#### 2009-2014



>1/3
Total
Asphalt
Tons!



### **Polymers**







Stroup-Gardiner

### **Polymer Modified Asphalt**

Lower Rutting



Lower Fatigue Cracking



Lower Trans Cracking





#### **RAP** and **RAS**

- Resource Conservation
- Energy Conservation
- Price Stabilization





#### **Greenhouse Gases**

 Using RAP/RAS reduces CO<sub>2</sub>e about the same amount as removing 270,000 vehicles





### **Cost Savings**

| Reference                   | Material           | Cost Savings         |
|-----------------------------|--------------------|----------------------|
| Zhou et al. (2006)          | 5% RAS             | 2 – 5%               |
| Brock (2008)                | 20% RAP<br>50% RAP | >16%<br>>40%         |
| NCAT (Willis et al., 2012)* | 25% RAP<br>50% RAP | 14 – 20%<br>29 – 35% |

<sup>\*</sup> Used different amounts and stiffness of virgin binders used in mixtures.



### RAP/RAS and PG 1008

 RAP/RAS binder too stiff

- Solution:
  - Balanced mix design for project-specific conditions





Not What We're Looking For!





## Testing: Macro and Nano

Balanced Mix Design Microstructure

### **Balanced Mix Design**

- Current mix design methods
  - Volumetrics + Stability
    - Hveem
    - Marshall
  - Superpave method
    - Pure volumetrics; no mechanical testing
  - Superpave plus
    - Volumetrics+Hamburg/APA/...
- Control cracking in current methods
  - $-V_{BE}$  (=VMA-AV) to control cracking; OK for virgin mixes
  - No simple cracking test



### **Cracking Tests**

Minnesota!





#### RAP/RAS field test sections and performance

| Test     | sections         | Highway                                        | Overlay/<br>new const. | Weather  | Traffic<br>MESAL | OT cycles | Performance                                |
|----------|------------------|------------------------------------------------|------------------------|----------|------------------|-----------|--------------------------------------------|
| Amarillo | O%RAP            | IH40 (severely cracked thick asphalt pavement) | 4 inch/<br>overlay     | Cold     | 30               | 95        | 3 yrs: 100% refl.<br>cracking              |
|          | 20%RAP           |                                                |                        |          |                  | 103       |                                            |
|          | 35%RAP           |                                                |                        |          |                  | 200       | 3 yrs: 57% refl.<br>cracking               |
| Pharr    | 0%RAP            | FM1017-Very<br>good support                    | 1.5 inch/new const.    | Very hot | 0.8              | 28        | 3yrs: overall -                            |
|          | 20%RAP           |                                                |                        |          |                  | 6         | good conditions                            |
|          | 35%RAP           |                                                |                        |          |                  | 7         |                                            |
| Laredo   | 20%RAP           | SH359-regular support                          | 3 inch/<br>overlay     | Very hot | 1.5              | 3         | 3yrs: No<br>cracking                       |
| Houston  | 15%RAP/<br>5%RAS | SH146-Very<br>good support                     | 2 inch/new const.      | hot      | 3.0              | 3         | 2.5yrs: No<br>cracking                     |
| Dalhart  | 5%RAS            | US87                                           | 3 inch/<br>Overlay     | Cold     | 3.0              | 48/96     | 96 cycles-20%<br>RCR; 48 cycles-<br>50%RCR |



### What Asphalt Looks Like at Nano Level





#### **Nano-Indentation Test**

- Use conical or spherical indenter
- Apply constant load
- Measure penetration with time





#### **AFM – Nano Scale Penetration Test**





#### Microstructure





# Design: Sustainable and Long-Lasting Perpetual Pavement



**Porous Pavement** 



#### Demo





### **Advantages**

- Reduced surface runoff
- Better erosion control
- Better water quality
- Reduced storm sewer requirements
- Maintain natural drainage paths
- Reduced standing water nuisance
- Better GWT recharge
- Better skid resistance



#### **Surface Courses**

- Safety
  - Skid resist. low polish aggregate, microtexture important
  - Visibility OGFC
- Noise Mitigation
  - Smaller micotexture
  - OGFC 9.5 or 12.5 mm



**NCAT Noise Trailer** 





### **Perpetual Pavement Design**











### es, Time and Resources

#### **Costs**



### **Goal of Perpetual Pavement Design**

- Design the structure such that there are no deep structural distresses
  - Bottom up fatigue cracking
  - Structural rutting
- All distresses can be quickly remedied from surface
- Result in a structure with 'Perpetual' or 'Long Life'



#### **Avoid These!**



**Bottom-Up Fatigue** 

#### **Structural Rutting**





# Rapid Construction: Our New Reality – Faster and Better!





#### **FASTER! BETTER!**

- Accelerated construction means ". . .minimizing time impacts to the public. . ." (Blanchard, 2009)
- Currently takes 10 to 15 years to get project from planning through construction.
- Project delivery:
  - Right attitudes and personalities
- Both contractor and agency:
  - Decision-making at lowest level
  - Remain customer focused
- Open to new approaches





Peak-Period Congestion on the NHS: 2040 CANADA Pacific Ocean MEXICO Congested Highly Congested

(a) Year 2011.

(b) Year 2040.





Figure A. Project Costs by Type, Related to Duration



### **Construction Productivity**

- Allow contractor creativity
- Use existing in-place material
  - Demolition is slowest process
- Repetition of tasks
- Consider additional lanes to allow material removal/delivery
- Minimize mobilization/demob
- Evaluate variety of traffic control scenarios
- Real-time monitoring!



### Pave-IR Bar esources









# Intelligent Compaction Feedback









## Has this ever been you?





# MultiCool Program Window





# Into the Futures. .

Place two layers at once!





# THINK OUTSIDE THE PAVER!



# The adhesive road by Dura - Vermeer

- A 30 mm asphalt layer rolled out as a carpet
- Can be attached and removed by using a switch on/off system using microwaves.















### Life Will Not Get Easier/Less Complicated





(a) Year 2011.

(b) Year 2040.



### **OUR BIGGEST CHALLENGE!**



### **Education & Training**

- Universities
  - Reduced emphasis on materials and pavements
- Trade Schools
  - Need material testing tracts
- Industry Efforts
  - Helps, but more is needed!





### **Opportunities for Innovation**

- All weather paving
  - Equipment
  - Quality
  - Materials
- Real time control/acceptance testing
- Nano-scale improvements
- Faster construction
  - Equipment
  - Scheduling



### **Opportunities for Innovation**

- Lower energy consumption
- Environmental/Safety improvements
  - Lower fumes/emissions
  - Increase recycling
  - Lower noise
- Quality improvements
  - Longer surface life
  - Long-life structures
  - Better durability predictions
- Improved Education